The Baire Theory of Category

نویسنده

  • Jaymie Strecker
چکیده

The Baire theory of category, which classifies sets into two distinct categories, is an important topic in the study of metric spaces. Many results in topology arise from category theory; in particular, the Baire categories are related to a topological property. Because the Baire Category Theorem involves nowhere dense sets in a complete metric space, this paper first develops the concepts of nowhere dense and complete metric space, then explains the Baire Category Theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products , the Baire category theorem , and the axiom of dependent choice

In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (1) The axiom of dependent choice. (2) Products of compact Hausdorff spaces are Baire. (3) Products of pseudocompact spaces are Baire. (4) Products of countably compact, regular spaces are Baire. (5) Products of regular-closed spaces are Baire. (6) Products of Čech-complete...

متن کامل

Cone normed spaces

In this paper, we introduce the cone normed spaces and cone bounded linear mappings. Among other things, we prove the Baire category theorem and the Banach--Steinhaus theorem in cone normed spaces.

متن کامل

Resource-Bounded Baire Category: A Stronger Approach

This paper introduces a new deenition of resource-bounded Baire category in the style of Lutz. This deenition gives an almost-all/almost-none theory of various complexity classes. The meagerness/comeagerness of many more classes can be resolved in the new deenition than in previous deenitions. For example, almost no sets in EXP are EXP-complete, and NP is PF-meager unless NP = EXP. It is also s...

متن کامل

A model theoretic Baire category theorem for simple theories and its applications

We prove a model theoretic Baire category theorem for τ̃ f low-sets in a countable simple theory in which the extension property is firstorder and show some of its applications. We also prove a trichotomy for minimal types in countable nfcp theories: either every type that is internal in a minimal type is essentially-1-based by means of the forking topology or T interprets a strongly-minimal for...

متن کامل

Baire Category for Monotone Sets

We study Baire category for downward-closed subsets of 2ω , showing that it behaves better in this context than for general subsets of 2ω . We show that, in the downward-closed context, the ideal of meager sets is prime and b-complete, while the complementary filter is g-complete. We also discuss other cardinal characteristics of this ideal and this filter, and we show that analogous results fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003